RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

SECOND YEAR B.A./B.SC. FOURTH SEMESTER (January – June) 2013 Mid-Semester Examination, March 2013

Date : 06/03/2013

CHEMISTRY (General) Paper : IV

Time : 12 noon – 1 pm

[Attempt all questions]

- 1. Explain the followings :
 - a) Half-life period of a 1st order reaction is independent of the initial concentration.
 - b) Hydrolysis of ester (acid catalyzed) involves 3 molecules but it is pseudo unimolecular.
 - c) log (rate constant) vs. $\frac{1}{T}$ plot gives idea about activation energy.

<u>Or</u>

- 2. a) Start with the reaction (hypothetical) $A \rightarrow P$ of nth order. Find out the expression of $t_{\frac{1}{2}}$ for this. [2]
 - b) A first order reaction is 50% completed in 60 min. How long will it take for the reaction to go to 90% completion? [2]
 - c) Consider reaction of multistep

$$N_2O_5 \rightarrow NO_3 + NO_2$$
; $NO_3 + NO_2 \rightarrow NO_2 + NO + O_2$; $NO_3 + NO \rightarrow 2NO_2$

Write down the expression for $\frac{d[NO]}{dt}$, applying steady state approximation. [2]

- 3. a) Write down the quantitative relation between elevation of boiling point of the solvent due to the dissolution of solute in it, with the concentration of the solution. [2]
 - b) Under what condition is this valid for real solutions?
 - c) Do you think the interaction between solute and solvent is responsible for the phenomena? [2]

<u>Or</u>

- 4. a) What is the definition of an ideal solution?
 - b) Give a qualitative plot of partial vapour pressure of the solvent against the mole fraction of the solvent in case of an ideal solution. [1¹/₂]
 - c) Pressure of an ideal gas and osmotic pressure of an ideal solution obey same type of law. Explain. [2]
- 5. a) Arrange in increasing order the Lewis acid character of the following compounds— [4]
 - i) BCl_3 , BI_3 , BF_3 , BBr_3
 - ii) SiF₄, SiI₄, SiBr₄, SiCl₄
 - b) Identify the conjugate acid (if) and conjugate base (if) of the following species— [2] O^{2-} , HS⁻, H₂PO₄⁻ and CN⁻

<u>Or</u>

6.	a)	Explain the acid-base concept in terms of solvent system concept taking a non aqueous solvent an	d
		a neutralisation reaction.	[3]
	b)	Deduce the equation of pH of a salt derived from weak acid and strong base.	[3]
7.	a)	Prepare PhCH ₂ CO ₂ H from PhCH ₂ Br	[2]
	b)	Explain why RCOOH is more acidic than ROH.	[2]
	c)	Convert (i) RCOOH to RBr and (ii) RCH ₂ COOH to RCH(Br)COOH.	[2]

[3×2]

Full Marks: 25

[11/2]

[1]

d) Give 3 combinations of RMgX and a carbolyl compound that could be used to prepare CH_3

$$PhCH_2 - C - CH_2CH_3$$

$$OH$$

<u>Or</u>

- 8. a) Synthesize alanine using Gabriel-Phthalimide Synthesis.
 - b) How will you explain exceptionally high dipole moment of amino acids? [1]

[2]

[2]

[2]

- c) What happens when excess phenyl hydrazine is reacted with D-glucose?
- d) What do you understand by isoelectric point of an amino acid? Under an electric field, towards which electrode glycine (isolectric point 5.97) will move if it is in a solution of pH 7. [3]

80衆Q